The Traveling Salesman Problem Nearest-Neighbor Algorithm

Lecture 31 Sections 6.4

Robb T. Koether

Hampden-Sydney College

Mon, Nov 6, 2017

- Greedy and Approximate Algorithms
- The Nearest-Neighbor Algorithm
- The Repetitive Nearest-Neighbor Algorithm
- 4 Assignment

Outline

- Greedy and Approximate Algorithms
- 2 The Nearest-Neighbor Algorithm
- 3 The Repetitive Nearest-Neighbor Algorithm
- Assignment

Greedy Algorithms

Definition (Greedy Algorithms)

A greedy algorithm is an algorithm that, like greedy people, grabs what looks best in the short run, whether or not it is best in the long run.

- Greedy algorithms optimize locally, but not necessarily globally.
- The benefit of greedy algorithms is that they are simple and fast.
- They may or may not produce the optimal solution.

Definition (Approximate Algorithm)

An approximate algorithm is an algorithm that gives a good solution, but not necessarily the best solution.

 The benefit of approximate algorithms is that they can produce a good solution very quickly.

Definition (Approximate Algorithm)

An approximate algorithm is an algorithm that gives a good solution, but not necessarily the best solution.

- The benefit of approximate algorithms is that they can produce a good solution very quickly.
- They operate under the principle "Good is good enough."

Definition (Approximate Algorithm)

An approximate algorithm is an algorithm that gives a good solution, but not necessarily the best solution.

- The benefit of approximate algorithms is that they can produce a good solution very quickly.
- They operate under the principle "Good is good enough."
- Also known as "The perfect is the enemy of the good."

Definition (Approximate Algorithm)

An approximate algorithm is an algorithm that gives a good solution, but not necessarily the best solution.

- The benefit of approximate algorithms is that they can produce a good solution very quickly.
- They operate under the principle "Good is good enough."
- Also known as "The perfect is the enemy of the good."
- "Striving to be better, oft we mar what's well." (Shakespeare)

- We will look at three greedy, approximate algorithms to handle the Traveling Salesman Problem.
 - The Nearest-Neighbor Algorithm
 - The Repetitive Nearest-Neighbor Algorithm
 - The Cheapest-Link Algorithm

Outline

- Greedy and Approximate Algorithms
- The Nearest-Neighbor Algorithm
- 3 The Repetitive Nearest-Neighbor Algorithm
- Assignment

Definition (Nearest-Neighbor Algorithm)

The Nearest-Neighbor Algorithm begins at any vertex and follows the edge of least weight from that vertex. At every subsequent vertex, it follows the edge of least weight that leads to a city not yet visited, until it returns to the starting point.

- We ended up with the circuit ABJCEDFGHIA.
- The length is 94 miles.
- Is it possible to do better?

- We ended up with the circuit ABJCEDFGHIA.
- The length is 94 miles.
- Is it possible to do better?
- Yes.

- Re-do the previous example, starting at city *B*.
- Re-do the previous example, starting at city C.
- Did we get a better solution?

Outline

- Greedy and Approximate Algorithms
- 2 The Nearest-Neighbor Algorithm
- The Repetitive Nearest-Neighbor Algorithm
- Assignment

The Repetitive Nearest-Neighbor Algorithm

Definition (Repetitive Nearest-Neighbor Algorithm)

The Repetitive Nearest-Neighbor Algorithm applies the nearest-neighbor algorithm repeatedly, using each of the vertices as a starting point. It selects the starting point that produced the shortest circuit.

Outline

- Greedy and Approximate Algorithms
- 2 The Nearest-Neighbor Algorithm
- 3 The Repetitive Nearest-Neighbor Algorithm
- 4 Assignment

Assignment

Assignment

• Chapter 6: Exercises 35, 36, 37, 41, 45.